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In this paper the cooking of meat is modeled as a process of time-dependent conduction 
through a constant-property medium that shrinks as its temperature increases. The overall 
shrinkage is the integrated result of shrinking that is distributed volumetrically through 
the piece of meat and depends on the temperature history at every point. The meat 
temperature history and associated shrinkage are determined numerically. The geometric 
configuration is the one-dimensional conducting slab with convective heating on both 
sides. Means for calculating the required cooking time are reported in the form of 
dimensionless charts for the temperature in the midplane of the meat slab. A numerical 
example shows that the cooking time calculated by accounting for meat shrinkage is 
appreciably shorter than the time estimate based on the classical Heisler chart for 
conduction in a constant-volume slab. 
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Background 

The previous efforts to develop models for the cooking of meat 
fall into two basic groups, labeled A and B in this discussion. 
In the first group are those that approach the problem by 
looking at very specific food products and attempt to develop 
accurate models for cooking those products in specific environ- 
ments. The advantage of this method is that it accounts for 
special features in the cooking process, features that are unusual 
or even unique to the food that is modeled. 

The second group of studies focuses on specific aspects of 
the cooking process in order to develop general guidelines for 
cooking models of all types. Since the reactions that take place 
when cooking meat are numerous and complex, it is extremely 
useful to analyze those reactions specifically in order to identify 
the ones that can be ignored and the ones that can be subjected 
to simplifying assumptions. 

Group A 
The leading example of research of the first kind is the work 
of Holtz and Skj/51debrand, ~-3 who looked exclusively at 
minced meat loaves being cooked in forced convection ovens. 
They begin with purely experimental work. In an early paper 
by Skj61debrand ~ the mass and heat transfer coefficients for 
the process were determined experimentally. In another experi- 
mental paper, Holtz and Skj61debrand 2 found relationships 
between weight loss and the formation of a crust at the meat 
loaf surface, and the relation between "sensorial aspects" and 
oven conditions. Using all of these empirically determined 
relationships they developed a complete mathematical model 
for the cooking of meat loaf in a forced convection oven. a The 
mathematical model takes into account heat and mass transfer, 
crust formation, and the evaporation of water at the crust-crumb 
interface (where the dry crust surface touches the moist interior 
of the meat loaf). 
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The ability of Holtz and Skj/51debrand's model to predict the 
actual cooking time is characterized by an error of 15-30 
percent, depending on the cooking conditions. They attributed 
this error to the uncertainty in the specified value for the thermal 
diffusivity of meat, to the neglect of the effects of meat quality 
and water-holding ingredients, and above all, to the neglect of 
meat shrinkage during cooking. 

Another fairly complete model for the cooking of a specific 
meat product (boiled shrimp) was developed by Chau and 
Snyder. 4 They determined experimentally the heat transfer 
coefficient and the thermal properties of shrimp and solved 
numerically the heat conduction problem in a simplified geom- 
etry that approximated the shape of a shrimp. Although their 
model predicted well the centerline temperature during cooking, 
they did find that some error accumulated near the end of the 
process. 

Most interesting is that Chau and Snyder wanted to be able 
to also predict the cooling of the cooked shrimp for storage, 
and that their model had large errors in the prediction of 
the temperature history during cooling. Experimentally, they 
showed that the shrimp had become appreciably smaller after 
cooking. Their model was subsequently improved by adjusting 
the shrimp to a new (smaller) size when the model shifted from 
the cooking mode to the cooling mode. 

Bengtsson et al. s studied oven-roasted beef. Like Holtz and 
Skj61debrand, they considered many factors in the cooking 
process--heat and mass transfer, weight loss, and moisture and 
fat content--and developed a fairly simple model for tem- 
perature prediction. In the end they found that their model 
worked fairly well in the early stages of cooking, but began to 
overestimate the temperature in the meat as time progressed. 
They attributed this error to the possible swelling of the meat. 
This explanation, however, is questionable: it seems unlikely 
that the error was a result of meat swelling, as every other 
researcher has found that meat shrinks rather than swells during 
cooking. 

Dagerskog 6 published two related articles analyzing the 
frying of hamburger patties. He analyzed weight loss, crust 
formation, heat transfer, and particularly mass transfer. By 
inserting a plastic barrier between layers of a hamburger patty, 
he showed, both experimentally and numerically, that mass 
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transfer inside the patty increases heat penetration. His numerical 
model was fairly accurate in predicting temperature distribution 
and water loss. 

The major drawback of all these models is their heavy 
dependence on empirical data, which are specific to the cuts of 
meat being cooked and the manner in which the cooking takes 
place. The functions for the heat transfer coefficients are all 
determined empirically without any attempt to indicate under 
what conditions similar heat transfer coefficient values might be 
valid. The models for crust formation, and moisture release are 
similarly dependent on the specific cuts of meat. Meat shrinkage, 
or swelling, is acknowledged as a cause for error, but no attempt 
is made to actually model the shrinkage of meat as cooking 
progresses, or to explore how large an error might result from 
neglecting this effect. 

G r o u p  B 

In the second group, the most general meat-cooking study to 
date has been performed by Burfoot and James. 7'8 In their 
1984 paper they made an analytical estimate for the heat transfer 
coefficient for combined convection and radiation. They also 
investigated experimentally the degree of meat shrinkage (in 
a roughly cylindrical cut of meat) and found that the change 
in length between points in the meat varied from 4-46 percent 
after cooking. They found the overall longitudinal shrinkage 
was 20 percent. They incorporated this into their simple model 
by assuming that the radius of the meat cylinder decreased by 
10 percent at the onset of cooking and then remained constant. 

Burfoot and James 7 concluded that there are five important 
areas that need to be explored more thoroughly before an 
accurate and general cooking model can be developed: the 
values of the heat and mass transfer coefficients, the thermal 
properties of meat at high temperatures, the rate of diffusion, 
and the shrinkage. The latter forms the subject of the present 
study. 

In a subsequent paper Burfoot and James 8 explored the 
variations in the heat transfer coefficient (h) and their effect on 
cooking and thawing times for cylindrical cuts of meat. They 
reported that the spatial variation in heat transfer coefficient 
made a large difference in cooking (h varied linearly along a 
meat cylinder oriented horizontally; it varied from the end to 
the midplane of the cylinder). They also found, however, that 
temporal variation of the heat transfer coefficient did not result 
in expected cooking times that were significantly different from 
those predicted using a time-averaged h. Trying to determine a 

time-dependent function of h, therefore, is a needless compli- 
cation when developing a cooking model. 

Hamm 9 examined experimentally the changes in the water- 
holding capacity of beef during cooking. The water-holding 
capacity is the beef's ability to resist the removal of liquid that 
could result from squeezing the beef or from gravity. Hamm 
found that beef loses a large portion of its water-holding 
capacity between 40 and 50°C. At temperatures greater than 
50°C the water in beef begins to drip out under the influence 
of gravity and can be squeezed out by internal or uneven 
external pressure. 

This result allowed Hung 1° to identify the mechanism for 
meat shrinkage during cooking. By using transmission electron 
microscopy in beef muscle he found that the shrinkage was the 
result of shrinking of the sarcomeres. Sarcomeres are units of 
the myofibril, which make up the muscle fibers. He found, 
moreover, that the sarcomere shrinkage was dependent almost 
exclusively on temperature rather than time of exposure to a 
given temperature. The shrinkage occurred in two phases; the 
first at a fairly low temperature and the second at a much higher 
temperature (70°C). Hung found experimentally that the first 
phase of sarcomere shrinkage did not result in weight loss or 
in dripping. The second phase, on the other hand, corresponded 
exactly with the major period of meat dripping. The change in 
the water-holding capacity that had been identified by Hamm 
allowed Hung to explain the difference in behavior between the 
two periods of sarcomere shrinkage. 

Godslave et al. t1'12 conducted experiments in which they 
examined in detail the loss of moisture from beef during cooking 
and identified several stages in the dripping and drying process. 
In his thesis, Godslave 12 reported a model for temperature 
prediction when cooking beef; however, the model is based 
entirely on empirically determined constants (it is actually a 
curve fit of the experimental data). 

In summary, the research of the second kind attempts to 
clarify specific aspects of the cooking process. Although the 
experiments involve specific cuts of meat, their results are 
fundamental enough to be incorporated in more general models. 

P h y s i c a l  m o d e l  

The objective of our work is to show the effect that the shrinking 
has on the cooking times of various cuts of meat. Meat consists 
primarily of liquid held in a protein matrix much like a sponge. 
At room temperature, however, the meat retains its liquid, so 

N o t a t i o n  

Bi Biot number, Equation 17 
f Shrinkage factor, Equation 6 
f~  Final shrinkage factor, Figure 3 
h Heat transfer coefficient 
k Thermal conductivity of meat 
L Instantaneous half-thickness, Figure 1 
L o Initial half-thickness, Figure 1 
N Number of parallel slices, Figure 1 
t Time 
T Temperature 
Tc Temperature in the midplane, x = 0, Figure 1 
T O Initial temperature 
T 1 Temperature at which shrinking begins 
T 2 Temperature at which shrinking ends 
T~ Ambient (oven) temperature 

x Transversal coordinate, Figure 1 

Greek 
Ax 
Ax o 

0 
Oo 
01 

02 

symbols 
Instantaneous thickness of one slice 
Initial thickness of one slice 
Thermal diffusivity of meat 
Dimensionless temperature, Equation 15 
Dimensionless 
Dimensionless 
Figure 3 
Dimensionless 
Figure 3 
Dimensionless 
16 
Dimensionless 
Dimensionless 

midplanc temperature 
temperature at which shrinking begins, 

temperature at which shrinking ends, 

instantaneous half-thickness, Equation 

transversal position, Equation 15 
time (Fourier number), Equation 16 
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that even under an uneven pressure distribution the liquid is 
not squeezed out. Hamm 9 showed that the water-holding 
capacity of meat decreases as cooking progresses, and that this 
decrease is almost complete when the meat temperature reaches 
approximately 60°C. He found that the water-holding capacity 
continues to decrease beyond the 60°C mark; however, the 
bulk of the decrease occurs in the 40-50°C range (see also 
McGreela). Beyond that range, the liquid can flow out of the 
protein matrix under the influence of gravity, or it can be 
squeezed out by applying pressure (e.g., with a spatula) in the 
same way that water can be squeezed out of a sponge. 

In spite of the sizeable shrinkage exhibited during cooking, 
the density of meat remains nearly constant. This is because 
the cooking and shrinking is accompanied also by a loss of 
mass in the form of the liquid that is freed at the surface of the 
cut of meat. The liquid is pushed toward the surface by 
the protein matrix, which shrinks during cooking, and after 
reaching the surface it is removed by gravity. 

In summary, the body of meat can be modeled as a 
conducting medium with constant density. The external surfaces 
of this body migrate toward the center as the cooking progresses. 
This model is used here only as a means of evaluating the 
magnitude of the heat transfer effect of meat shrinking, i.e., to 
decide if this effect is significant. It is worth mentioning that a 
more complete (predictive) model for meat cooking would 
incorporate the shrinking effect next to several other features 
that are currently left out (e.g., internal mass transfer, crust 
formation, surface evaporation). 

M a t h e m a t i c a l  f o r m u l a t i o n  

Consider the unidirectional conduction configuration defined 
in Figure 1. The piece of meat is modeled as a slab of initial 
half-thickness Lo and initial temperature To. Beginning with 
the time t = 0, both sides of the slab are exposed to a fluid of 
temperature T®, across a constant heat transfer coefficient h. 
The slab material is stationary and homogeneous, and its 

i - I 2 . . .  N 

[< Lo )[ 

h,W. 

I I ) X  

0 L ( t )  

--~ ~ X  N 

i -  1 2 . . .  N 

Figure I One-dimensional piece of meat (slab) with convective 
heat transfer and shrinkage 
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0 
0 

Figure 2 Piecowise linear model for the shrinkage factor f 

thermal properties (k,a)  are constant. In time, the local 
temperature T(x, t) increases, and the associated shrinkage of 
the material is reflected in the monotonic decrease of the 
instantaneous half-thickness L(t). The time-dependent con- 
duction process is governed by the following equation, boundary 
conditions, and initial condition: 

~T ~2T 
- a - -  (1) 

~t ~x 2 

OT 
- - = 0 ,  at x = 0  (2) 
~x 

k ~T-=h(T®- T), at x = L ( t )  (3) 
~x 

T=To at t = 0  (4) 

What distinguishes this process from the classical problem 
of unsteady conduction in a slab 14 is the boundary condition 
(3) in which L(t) is related to the history of the temperature 
distribution T(x, t). In order to see the basis for this relationship, 
assume that the original half-thickness Lo is divided into a large 
number (N) of slices of equal thickness (Figure 1, top). 

Lo 
AXe = - -  (5) 

N 

In time, each slice shrinks. In Figure 2 we will see that the 
shrinking of one slice (meat sample) is due to the elevated 
temperature of the sample. The instantaneous thickness of the 
i 'h slice is related to the original thickness through the formula 

Ax~ = Axof(T~) (6) 

in which the shrinkage factor, f, is a known function of the 
slice temperature. (Note that f < 1 ). The instantaneous half- 
thickness of the slab is therefore 

N 

L(t) = ~ Axof[T~(t)] (7) 
i=1  

It is important to note that in this relation T~ is the 
temperature of the i th slice, i.e., the temperature in a plane that 
moves toward x = 0 as the time, t, increases. In order to be 
able to use Equation 7, it is necessary to keep track of the 
movement (position) of each slice. We do this by calculating 
the instantaneous distance x~ between the slice (plane of 
temperature Ti) and the midplane of the slab. 

i 
x,(t) = ~ Axof[Tj(t)] (8) 

j = l  

In this way, the instantaneous positions of all the slices generate 
the curve labeled t in Figure 3. In the same figure, the initial 
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par t ly  
cooked \ 

t 

N 

uncooked 

o x~ ( t )  L(t) Lo 
> X  

Figure 3 Shrinking curve, or the instantaneous position of each of 
the initial constant x planes in Figure 1 (top) 

temperature distribution (the state of zero shrinkage) is repre- 
sented by the straight line. The statement for the problem of 
determining the temperature distribution T(x,  t) becomes com- 
plete as we combine Equation 7 with the shrinkage curve of 
Figure 3 : 

N 

L(t )  = ~ A x o f [ T ( x  i, t)] (9) 
i=1 

It is convenient to restate Equations 1-4 and 9 in dimension- 
less terms : 

dO ~20  
- ( 1 0 )  8z 8~ 2 

60 
- - = 0 ,  at ~ = 0  (11) 
~ 

60 
- B i ( 1 - 0 ) ,  at ~ = 2 ( z )  (12) 

~ 

o = o,  at  z = o ( 1 3 )  

1 N 
a(z) = ; 2 f[O(~,, z)] (14) 

i = l  

by defining the dimensionless variables 

T - - T  o x 
0 - ~ - (15) 

T~ - To' t.o 

~x L 
z - - t L ~  , ~ -  Lo (16) 

The Biot number is based on the initial half-thickness 

Bi - hLo ( 17 ) 
k 

N u m e r i c a l  m e t h o d  

The conduction Equation 10 was solved at each time step by 
using a solver based on the trapezoidal rule and the second- 
order accurate backward difference formula (TRBDF2). This 
solver is second-order accurate in both time and space. The 

number of grid points was 101; therefore, the global spatial 
error was on the order of one part in 10,000. The TRBDF2 
solver is a composite method, which allows for an estimate 
of the local truncation error at each step. The time increment 
was chosen so as to force a local truncation error on the order 
of 10-3 of the norm of 0 values at the gridpoints. The results 
of the TRBDF2 solver were verified by using a simple forward 
Euler solver; however, all the results exhibited in this paper 
were generated using the TRBDF2 solver. 

The boundary conditions were implemented using the mirror 
point method. The values of the mirror points were determined 
by using second-order accurate slope discretizations. A zero 
slope boundary condition was used in the center of the slab 
and the exterior mirror point value was determined using a 
conduction-convection balance at the surface. 

In order to account for the shrinking of the conduction 
domain, the L0 slab was first divided into 100 equal slices. 
The initial dimensionless length of each slice was therefore 0.01. 
After the time step was advanced, the 0 value at the midpoint 
of each slice was evaluated. Linear interpolation was used to 
determine the 0 values at points that lay between gridpoints. 
The length of each of these segments was then adjusted using 
the shrinking model. The thicknesses of the slices were evaluated 
from the center to the surface, and then the new half-width of 
the slab was computed by adding up the thicknesses of all of 
the slices. 

The 0 grid had to be redrawn since the shrinkage leaves the 
exterior gridpoints beyond the edge of the slab. A new set of 
101 evenly spaced gridpoints was drawn on the now thinner 
slab, and the 0 at each gridpoint was determined using the old 
temperature profile. This resulted in a new 0 profile that was 
a "truncated" version of the earlier profile, because the 
near-surface (hottest) material is forced out of the system as 
the plane x = L(t)  migrates to the left (Figure 3). 

S h r i n k a g e  f a c t o r  m o d e l  

The shrinkage factor f was assumed to have the temperature 
dependence illustrated in Figure 2, This model is consistent 
with Hung's 1° work, which showed that muscle shrinkage 
depends primarily on temperature level, rather than on the time 
of exposure to that temperature level. The f = 1 limit represents 
the state of zero shrinkage at room temperature (0 = 0). The 
shrinking does not continue indefinitely as the temperature 
increases. It stops at f = f~ ,  when the temperature reaches the 
level represented by the dimensionless 02 on the abscissa. The 
shrinking begins when the temperature exceeds 01 , and the 
decrease o f f  from f(O 1 ) = 1 to f(02) = f ~  is assumed linear. 

The dimensionless constants ( f~ ,  01, 02) for the model of 
Figure 2 must be determined empirically; however, they are 
independent of the size of the cut of meat and the method of 
cooking. By using transmission electron microscopy, Hung 1° 
found that there are two stages in the shrinking of beef 
sarcomeres (sarcomeres are units of the myofibril, which make 
up muscle fibers). In the first stage, the sarcomeres shrink from 
approximately 2.5-2.05 #m. This first shrinkage is completed 
at fairly low temperatures and is not related to (accompanied 
by ) weight loss. The second stage begins at T 1 ~ 70°C and ends 
at T2 - 90°C, while the sarcomeres shrink from 2.05-1.55 #m. 
Hung found that this second shrinkage is accompanied by 
weight loss, as discussed previously. 

For the final, long-time value of the shrinkage factor f~  we 
used the values 0.7 and, later, 0.6, which cover the range of 
our own observations of steaks cooked "well done." In the 
case of a cut of meat initially at T O = 25°C and cooked in an 
oven heated to T~ = 163°C (325°F), the dimensionless "tran- 
sition" temperatures marked on the abscissa of Figure 2 have 
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0.8 

i / N  

0.6 

0.2. 

Bi = I0 
01 = 0.33 
02 = 0.5 
f= = 0.7 

0 ~ "  
o o'.z oi,  o16 ols 

X/Lo 

Figure 4 The evolut ion of the shrinking curve ( Bi = 10, 01 = 0.33, 
02 = 0.5, f~ = 0.7) 
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the values 01 = 0.33 and 02 = 0.47. Since To and, especially, 
To can change from one application to another, the results 
exhibited in the next section cover the range 01 = 0.2-0.33 and 
02 = 0.4-0.6. 

Temperature history and cooking time 

The results of this study are presented in Figures 4-6. To start 
with, Figure 4 confirms all the features of the shrinkage 
distribution curves anticipated in Figure 2. The curve of i/N 
versus x/Lo deviates from the straight diagonal line as the time 
increases and as deeper strata of meat begin to shrink. In the 
case (Bi, 01, 0~, f~) for which Figure 4 was constructed, the 
shrinking effect penetrates all the way to the midplane (x = 0) 
when the dimensionless time ~ exceeds approximately 0.3. 

Another interesting observation is that at intermediate times 
(e.g., z = 0.15) each curve in Figure 4 is straight both to the 
left and to the right of a relatively narrow "knee" region. To 
the left, i.e., toward the slab midplane, the slope of the line is 
1/1, indicating that the inner strata have not experienced any 
shrinkage yet. To the right of the knee, the slope of the straight 
line is larger, 1/f~, meaning that the outer strata have all shrunk 
to their smallest size (or that the temperature of these strata 
has risen above 02, Figure 3). In conclusion, the only region 
in which the meat is shrinking is indicated by the curved knee. 
Since this active region is quite narrow--about  10 percent of 
the half-thickness L o-- the  actual function f(0)  chosen between 
01 and 02 (linear in Figure 3 ) does not have a significant impact 
on the results of this study. 

(1-0c) 
1.0. 

0.I 

0.01 

0.00 
0 I 2 

Figure 5 

3 4 8 12 16 20  24  3 0  50 70 

 t/L o 
The temperature history in the midplane (01 = 0.33, 0= = 0.5, f® = 0.7) 

90 110 130 130 
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(1-0~) Ot = 0.3 O, = 0.3 
Oz = 0.5 ( 1 - 0 ~ )  O~ : 0.5 

1 . 0  f® = 0.7 f® = 0.6 
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(1-0~) O~ = 0.2 
0 2 = 0 . 4  

1 . 0  f"  = o .7  

0.~ 
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(1-0~) O, = 02 
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Figure 6 Charts for the temperature history in the midplane of a shrinking slab 
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(1-0¢) 0~ = 0.3 0~ = 0.3 
02 = 0.4 ( 1 - 0 ¢ )  0z = 0.6 

1 .0  f= = 0.7 1 .0  f= = 0.7 
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0.7 0.7 

0.6 0.6 
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0.2 0.4 0.6 0.8 1.0 

~ t / ~  

Figure 6 

A key issue in the cooking of meat is the calculation of the 
required cooking time. Since the final degree of cooking (rare, 
medium, well done) is dictated by the temperature reached in 
the center of the cut of meat, it is important to know how the 
midplane temperature (0 = 0c, at x = 0) increases with time, 
and how it is affected by the oven conditions (T~, h) and the 
size of the piece of meat (L0). This information is presented 
beginning with Figure 5, which has the same features as the 
classical Heisler charts found in all heat transfer textbooks. In 
the case of meat cooking, the only relevant portion of this chart 
is the upper decade, where 0.1 < (1 - 0c) < 1, because proper 
cooking requires only moderate temperature rises in the mid- 
plane. For  example, beef is well done when its center tem- 
perature reaches approximately 82°C (or 180°F, Roberson and 
Roberson I ~), and this would correspond to a (1 - 0 c )  value 
of only 0.59 if T= = 163°C and To = 25°C. This is why the 
ordinate in Figures 6a - f  has been blown up to cover only the 
range 0.4 < (1 - 0~) < 1. 

The numerical procedure for estimating the required cooking 
time is illustrated by the following example. Consider the 
cooking of a 4-cm thick beefsteak in an oven at T® = 149°C 
(300°F). The initial temperature of the steak is To = 25°C. 
The center of the steak is to be cooked well done, T~ = 82°C 
(180°F), and this translates into a dimensionless Oc = 0.46, and 
(1 - 0c) = 0.54. 

The cooking time can be read off one of the charts assembled 
in Figure 6. Note first that the transition temperatures for beef 
(T1 = 70°C, T2 = 90°C) have the dimensionless counterparts 
0t = 0.36 and 02 = 0.52. The chart that comes closest to 
representing this case is Figure 6a. The reported value of the 
effective heat transfer coefficient (combined convection and 
radiation) in a convection oven varies from 18.5 W/m2°C 
in Burfoot and James 7 to 90 W/m2°C in Skji~ldebrand. 1 In this 
example we set h = 100 W/m2°C as the representative order 
of magnitude of the effective heat transfer coefficient. This value 

0.4 
0 
F 

continued 

0.2 0.4 0.6 0.8 1.0 

o~t/L20 

and the thermal conductivity of lean beef (0.4 W/m°C)  lead 
to an inverse Bier number k/hLo equal to 0.2. From Figure 6a 
we conclude that ¢t/L~ ~-0.41, and, since for beef ~ = 
1.25 x 10 -7 m2/s, 16 the actual time is t -~ 21.9 minutes. 

One interesting aspect of this time estimate is that if we were 
to neglect the shrinkage effect entirely (i.e., if we would use the 
Heisler chart), we would obtain t - 25.6 minutes. Although at 
first glance the difference of 3.7 minutes between these two 
estimates does not seem great, it is actually large from the point 
or view of not overcooking the steak, or when trying to cook 
the steak rare as opposed to well done. For  example, if we 
return to the present model (Figure 6a) and assume that the 
center of the steak is to be cooked rare, T c = 60°C (140°F), we 
find that the required cooking time is t ~ 15.5 minutes. We see 
now that the same steak would be well done only 6.4 minutes 
later. 

This numerical example has been extended in Figure 7 to a 
common range of meat-slab half-thicknesses Lo and oven 
temperatures T~. Figure 7a shows the cooking time calculated 
by taking the effect of meat shrinking into account, while Figure 
7b shows the base estimate in which the meat shrinking effect 
is neglected. Taken together, Figures 7a and b show that the 
cooking time is shortened by the effect of meat shrinking. In 
both figures, the cooking time increases with the half-thickness 
Lo, and decreases with the oven temperature T~o. 

The effect of the meat shrinking parameters 0~, 02, f ~  can 
be seen by comparing the six temperature charts of Figure 6 
with the corresponding chart for a conduction process in which 
the shrinkage is absent (Figure 8). The information found in 
Figure 8 is available also in Heisler's ~4 chart. This comparison 
shows that lower values of0~, 02, a n d f ~  lead to steeper ( 1 - 0c) 
curves, i.e., to shorter cooking times. It is worth noting that 
the changes in 0~ a n d f ~  have a stronger impact on the cooking 
time than the changes in 02. This is fortunate, because 01 and 
f~o are easier to measure experimentally than 02. 
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Figure 7 Numerical example: the cooking times for well done beef steak. (a) Model with meat shrinking, Figure 1 ; (b) model without 
shrinking" 
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Figure 8 The temperature history in the midplane of a slab that 
does not shrink 

In dimensionless terms, the same comparison between Figure 6 
(with shrinkage) and Figure 8 (without shrinkage) shows that 
the (1 - 0c) curves are relatively steeper at lower k/hLo values. 
This means that the effect of meat shrinking gains in importance 
as the Biot number increases, i.e., as one contemplates faster 
cooking methods (e.g., the methods of the fast-food industry : 
broiling, frying, and deep-frying). 

Conclusion 

The objective of this work was to examine a new aspect of the 
process of meat cooking, namely, the effect of the shrinking of 
the meat as the temperature rises. The overall shrinkage, or 
the movement of the surfaces toward the center of the piece of 
meat, is due to a process that is distributed volumetrically and 
tied to the local temperature history of each layer of meat. 

Means for anticipating the temperature history in the center 
of the piece of meat and the cooking time required to reach a 
certain temperature were determined numerically and reported 
in the form of generalized (dimensionless) charts (Figures 
6a-f). Although similar to the classical Heisler charts for 
time-dependent conduction in a constant-volume slab, these 
new charts predict cooking times that are signifificantly shorter 
than the corresponding estimates based on Heisler's charts. The 
effect of the shrinking process then is to accelerate the cooking 
of the innermost region of the piece of meat. 
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